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Overview

Setting

Solve problems where approximate optimization models can be hand-crafted

Learning toOptimize (L2O)

Make parameterized optimization model and use training data to tune it, i.e.

(model output) ≜ argmin (prior knowledge) + (data-driven terms)

Goal for Today

Outline the tools needed for audience to create their own L2Omodels
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Historic Comparison of Two Approaches

Machine Learning Traditional Optimization

NΘ(d) = σ(Wm·+bm)◦· · ·◦σ(W 1d+b1) argmin
x∈C

f (x)

Ë adapt to available data

é satisfy constraints / optimality

Ë expressive capacity

Ë flexible architectures

é adapt to available data

Ë guaranteed optimality

Ë interpretable models

Ë scalable first-order algorithms
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The Origin – LISTA

Learning fast approximations of sparse coding by Gregor and LeCun in 2010

Sparse codes can be modeled as solutions to the ℓ1 regularized problem

min
x

1
2
∥Ax − d∥2 + λ∥x∥1

Proximal gradient updates look like

xk+1 = shrink
(
xk − αA⊤(Axk − d), αλ

)
= shrink

(
W1x

k +W2d , αλ
)
,︸ ︷︷ ︸

feed forward layer

whereW1 = I − αA⊤A,W2 = αA⊤, and shrink(z , β) = sign(z) ·max(|z | − β, 0)

LISTA Idea: Treat xK as network output and tuneW1 andW2 from training data
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Key L2O Steps

1 Make a network by paramaterizing an optimization problem to get

NΘ(d) ≜ argmin
x

fΘ(x ; d)

Note: Constraints can be included in this formulation

Note: More general L2Omodels can use black box and optimization layers

2 Forward prop consists of applying an apt first-order algorithm until convergence

3 Backprop consists of using built-in autograd on last step of forward prop
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L2O via Building Blocks

argmin
x∈

+ +

Optimization Problem

d
xk

x∞

Implicit L2O Model

Model Inference

d NΘ⋆(d)

Choose
Algorithm

Train
Model
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Toy Example – Setup

Task

Recover a signal x⋆d from linear measurements d = Ax⋆d

Key Knowledge

Signal x⋆d has low dimensional structure (but is not sparse)

L2OModel

For a “sparisfying matrix” K , we can estimate

x⋆d ≈ argmin
x

∥Kx∥1 s.t. Ax = d

Question: Even if this model is “right” for some choice of K , how do we find K?
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Toy Example – Training

Original: x⋆
d Sparsified: Kx⋆

d

Figure 1:Applying the learned K sparsifies x⋆d (shown for test data d )

Fix weightsΘ = K ∈ R250×250, noting x⋆d ∈ R250 and d ∈ R100, and let modelNΘ be

NΘ(d) ≜ argmin
x

∥Kx∥1 s.t. Ax = d

For a distribution of measurement/signal pairs (d , x⋆d ), train model by minimizing

min
Θ

Ed

[
∥x⋆d −NΘ(d)∥2]

This ensures the weightsΘ are tuned as well as possible for the task at hand
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Toy Example – Results

Figure 2: Example inferences for test data d with sparsified Kx of each inference x shown
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Jacobian-Free Backprop

x_fxd_pt = find_fixed_point(d)

pred = apply_opt_update(x_fxd_pt, d)

loss = criterion(pred, labels)

loss.backward()

optimizer.step()

Figure 3: Sample PyTorch code for backpropagation. Here x_fxd_pt is the same as pred,
except that pred has gradients attached and x_fxd_pt does not

Informal Theorem:1 Backpropping through the final step of a fixed point

optimization algorithm (as shown above) yields a preconditioned gradient

1Wu Fung, et al. JFB: Jacobian-Free Backpropagation for Implicit Networks. 2022.
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Model Output Guarantees

Prior Knowledge Embedding

Can use regularizer to promote sparsity, low-rank, smooth, laying on manifold, ...

Hard Constraints

Constraints can be put into model (e.g. simplex, linear system) and forward

propagation can continue until these are met to given tolerance

L2Omodel can inherit all guarantees desired from traditional optimization
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Outline

1 L2O Overview

2 Numerical Examples

3 Appendix
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CT Image Reconstruction

Figure 4:Comparison of techniques, ranging from traditional to fully data-driven

(L2OModel) = NΘ(d) ≜ argmin
x∈[0,1]n

fΘ(Kx) s.t. ∥Ax − d∥ ≤ δ
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Traffic Routing

Task

Given contextual data d (e.g.weather, construction), predict traffic distribution

L2OModel

Assume drivers are self-interested and most likely behavior is a Nash equilibria,

where game gradient is unknown

Constraints

Vertex-arc incidence matrix characterizes road network,

yielding large linear constraints to get valid traffic flows
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Traffic Routing – Toy Example
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Figure 5: Predictions of toy traffic from context data d 15 / 20
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Summary

Setting

Solve problems where approximate optimization models can be hand-crafted

Learning toOptimize (L2O)

Make parameterized optimization model

(model output) ≜ argmin (prior knowledge) + (data-driven terms)

Training is “easy” using Jacobian-Free Backpropagation (JFB)

Outputs leverage available data, have strong guarantees, and are interpretable

17 / 20



Outline

1 L2O Overview

2 Numerical Examples

3 Appendix
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Forward Prop for Toy Example

The toy problem can be generalized to a model of the form

min
x

f (Kx) + h(x) s.t. ∥Mx − d∥ ≤ δ,

with proximable f and g , can be rewritten as

min
x ,w ,p

f (p) + h(x) + δB(d ,δ)(w) s.t.

 K

M

 x −

 p

w

 = 0,

where p and w are auxiliary variables and δB(d ,∞) is the indicator function that is 0

inside the Euclidean ball B(d , δ) and∞ elsewhere
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Forward Prop for Toy Example

Using Linearized ADMM updates yields the iterative updates

pk+1 = proxλf
(
pk + λ(νk1 + α(Kxk − pk))

)
wk+1 = projB(d ,δ)

(
wk + λ(νk2 + α(Mxk − wk))

)
νk+1
1 = νk1 + α(Kxk − pk+1)

νk+1
2 = νk2 + α(Mxk − wk+1)

rk = K⊤
(
2νk+1

1 − νk1

)
+M⊤

(
2νk+1

2 − νk2

)
xk+1 = proxβh

(
xk − βrk

)
,

which can be coded into the apply_opt_update function
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